
Parallel Smoothed Aggregation Multigrid :

Aggregation Strategies on Massively Parallel
Machines

Ray S. Tuminaro1

Sandia National Laboratories

and

Charles Tong2

Lawrence Livermore National Laboratory

0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

Abstract
Algebraic multigrid methods offer the hope that multigrid convergence

can be achieved (for at least some important applications) without a great
deal of effort from engineers and scientists wishing to solve linear systems.
In this paper we consider parallelization of the smoothed aggregation multi-
grid method. Smoothed aggregation is one of the most promising algebraic
multigrid methods. Therefore, developing parallel variants with both good
convergence and efficiency properties is of great importance. However, par-
allelization is nontrivial due to the somewhat sequential aggregation (or grid
coarsening) phase. In this paper, we discuss three different parallel aggre-
gation algorithms and illustrate the advantages and disadvantages of each
variant in terms of parallelism and convergence. Numerical results will be
shown on the Intel Teraflop computer for some large problems coming from
nontrivial codes: quasi-static electric potential simulation and a fluid flow
calculation.

1Supported by the Applied Mathematical Sciences program, U.S. Department of En-
ergy, Office of Energy Research, and was performed at Sandia National Laboratories,
operated for the U.S. Department of Energy under contract No. DE-AC04-94AL85000.

2This work was performed under the auspices of the US Department of Energy by
University of California Lawrence Livermore National Laboratory under contract No. W-
7405-Eng-48.

1 Introduction

Multilevel methods offer the best promise to balance fast convergence and
parallel efficiency in the numerical solution of elliptic partial differential equa-
tions. Multigrid methods are scalable and relatively suitable for parallel im-
plementation. The idea of multigrid is to capture errors spanning a range of
spaces via several levels of fineness. By traversing the levels, optimal con-
vergence rates are frequently observed (independent of the number of mesh
points) with overall solution times that are much faster than other methods.

For a large set of applications, algebraic multigrid methods provide many
of the convergence/efficiency benefits of multigrid without a large time in-
vestment from application engineers. Most algebraic methods automatically
construct coarse grids and grid transfer operators using a a modest amount
of application information. In this paper we consider the smoothed aggre-
gation multigrid method [11]. Smoothed aggregation is one of the more
promising algebraic multigrid methods. Various forms of aggregation have
been used on different applications [8] including some very difficult elasticity
simulations that are notoriously difficult for iterative methods [13] [1]. To
our knowledge the only other massively parallel smoothed aggregation work
is being developed concurrently by [1]. There is also work in parallelizing
classical algebraic multigrid[7]. There are many similarities in parallelizing
the coarsening phase of classical multigrid and parallelizing the aggregation
phase of smoothed aggregation. However, the specific coarsening algorithms
and convergence behavior are different.

In this paper we consider the development of variants of smoothed ag-
gregation suitable for massively parallel computer architectures. While most
smoothed aggregation algorithm stages parallelize easily, the aggregation (or
coarsening) phase is more problematic. In particular, the original coarsening
algorithm progresses by making each aggregate one after another (updating
information used to determine the next aggregate). In this paper, we present
three parallel aggregation schemes. In one variant coarsening occurs in each
processor independently. While highly parallel, this variant may coarsen
somewhat irregularly and is constrained by the number of processors and
the partitioning of the original data. The second algorithm tries to rectify
this by taking into account inter-processor matrix coupling. Specifically, it
coarsens near inter-processor boundaries first (requiring some processors to
wait for other processors). Once a processor’s inter-processor boundaries are
aggregated, it may coarsen the interior independently. The third variant is

1

based on parallel maximally independent sets (MIS). In this MIS aggrega-
tion all processors coarsen in parallel. There are, however, some restrictions
near processor boundaries (i.e. processors may need to wait for other proces-
sors before acting on inter-processor boundary points). While the decoupled
variant often performs satisfactorily, accounting for inter-processor coupling
is sometimes needed on complex applications in order to avoid deteriorating
convergence or increasing execution time. Numerical results will be shown on
some problems coming from nontrivial simulation codes on the Intel Teraflop
computer.

2 Smoothed Aggregation Multigrid Method

We begin with a brief multigrid description (see [4], [5], or [6] for more infor-
mation). A multigrid solver tries to approximate the original PDE problem
of interest on a hierarchy of grids and use ‘solutions’ from coarse grids to
accelerate the convergence on the finest grid. A simple multilevel iteration
is illustrated below.

/* Solve Ak u = b (where k is the current grid level) */
procedure multilevel(Ak, b, u, k)

u = Sk(Ak, b, u);
if (k 6= 1)

Pk = determine interpolant(Ak);
r̂ = P T

k (b− Aku) ;

Âk−1 = P T
k AkPk; v = 0;

multilevel(Âk−1, r̂, v, k − 1);
u = u + Pk v;

end if
end procedure

In the above method, the Sk()’s are approximate solvers (or more pop-
ularly called smoothers) and usually correspond to a basic iterative method
such as Gauss-Seidel. The Pk’s (interpolation operators that transfer solu-
tions from coarse grids to finer grids) are the key ingredients that must be
determined automatically within an algebraic multigrid method. 3

3The Pk’s are usually determined as a preprocessing step and not computed within the
iteration.

2

We now outline the construction of the Pk’s in the context of the smoothed
aggregation multigrid method. In our description we use the notation ‘grid
points’ in the aggregation process. While this term is more intuitive, it is
generally more accurate to refer to graph vertices. A graph corresponding to a
symmetric matrix is constructed by creating a vertex for each matrix row and
adding a graph edge between vertices i and j if there is a matrix nonzero in
the (i, j)th element. It is important to note that there are several important
enhancements/modifications that should be made when constructing this
graph. For example, if a nonzero value is relatively small, this edge should
not be added to the graph. This is critical for anisotropic problems where it
is best not to coarsen in directions of weak coupling. Furthermore, for PDE
systems it is often advantageous to build a graph corresponding to the block
matrix (grouping into blocks all unknowns at a grid point) as opposed to
treating each degree of freedom as a separate vertex [12].

The smoothed aggregation Pk’s are determined in two steps : coarsening
and grid transfer construction. The first step is to take each grid point and
assign it to an aggregate. This step is discussed in detail at the end of this
section. For now, we state that on 3D Poisson problems discretized on a
uniform grid with 27-point stencil, each aggregate consists of approximately
30 spatially close grid points. For simplicity of exposition the second step is
described below for a simple Poisson equation (though our algorithms/code
have been applied to more general PDE systems). A more detailed and
general discussion can be found in [13]. This second step consists of first
forming a tentative prolongator matrix P̃k and then applying a prolongator
smoother S̃k to it giving rise to Pk = S̃kP̃k. The tentative prolongator matrix
P̃k is constructed such that each row corresponds to a grid point and each
column corresponds to an aggregate. The entries of P̃k are as follows (for
specific applications such as elasticity problems, more complicated tentative
prolongators can be derived based on rigid body motions) :

P̃k(i, j) =

{
1 if ith point is contained in jth aggregate
0 otherwise

The tentative prolongator can be viewed as a simple grid transfer operator
corresponding to piecewise constant interpolation. While P̃k can be used for
Pk, a more robust method is realized by smoothing the piecewise constant
basis functions. For example, applying a damped Jacobi smoother yields:

Pk = (I − ωD−1
k Ak)P̃k (1)

3

where choices for ω can be found in [13]. If ω and the aggregates are properly
chosen, (1) leads to linear interpolation when applied to an one-dimensional
Poisson problem. In general, however, (1) does not correspond to linear
interpolation but yields better interpolation properties than piecewise con-
stant interpolation. Proofs illustrating convergence mildly dependent on the
number of mesh points can be found in [13]. This work is based on the
convergence theory in [3].

We now return to the first step of determining the Pk’s. The generation
of a tentative prolongator requires that aggregates be defined. For isotropic
problems using the above damped Jacobi smoother, the goal is to have fairly
uniform shaped aggregate regions with a diameter of length three. Small
aggregates (diameter less than three) lead to high iteration costs. This is
because the number of unknowns on the next finest grid is equal to the num-
ber of aggregates and because the number of nonzeros per row in the coarse
grid discrete operator depends on the distance between non-neighboring ag-
gregates.4 However, aggregates that are too large lead to grid transfer op-
erators that look more like piecewise constant interpolation and give poorer
multigrid convergence rates.

The basic aggregation procedure is given below.

Basic Aggregation

phase 1: repeat until all unaggregated points are adjacent to an aggregate
a) pick root point not adjacent to any existing aggregate
b) define new aggregate as root point plus all its neighbors

phase 2: sweep unaggregated points into existing aggregates or use them
to form new aggregates

On a uniform grid, a snapshot of the above algorithm might look like Figure 1
where three aggregates have already been formed and the fourth aggregate
is about to be created. After the fourth aggregate is finished only the grid
point in the upper left corner can be chosen in phase 1a. After this fifth
aggregate is created, the remaining unaggregated points must be handled
in phase 2 as they are all adjacent to existing aggregates. It is important
to understand that the more points handled by phase 2, the more likely
that resulting aggregates will be less uniform with diameters larger or small

4This is a function of the matrix-matrix multiply (PT
k AkPk) operation. That is, it is

possible to generate nonzeros in the coarse grid discretization matrix corresponding to two
non-neighboring aggregates that are separated by a thin aggregate.

4

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

	�	�	
	�	�	

�
�

�
�

�����
�����
�����
�����

��
��
�����
�����

������
���
������
���

���������������
���������������

���������������
���������������

���
���
���
���

�����
�����
�����
�����

Neighbor

Next new
aggregate

Adjacent to new aggregate

Aggregated

Adjacent to existing aggregates

Root point

Figure 1: Snapshot of basic aggregation process.

5

than three. Thus, the key is to choose root points in phase 1a such that as
many points as possible are aggregated. This means that we want to pack
aggregates tightly. To pack efficiently, most schemes choose the next root
point ‘close’ to existing aggregates (e.g. points with a distance three path
from several already chosen root points) to avoid leaving many holes/points
for phase 2. This can be seen in Figure 1 where a better choice for the next
root point might have been the lowest point denoted by an empty circle.
This would have allowed for an additional aggregate to be formed in phase
1. Unfortunately, it is this ‘packing’ feature which is difficult to attain in
parallel.

3 Parallel Aggregation

Parallelization of most standard multigrid kernels needs to be done with
care due to lower efficiencies associated with coarse grid processing, smoother
complications due to the somewhat serial nature of the very popular/effective
Gauss-Seidel method, and sparsity inefficiencies associated with the matrix-
matrix sparse multiplies needed to apply the damped Jacobi smoother (1)
and to form the coarse grid discretization operator. These issues, however,
are not the focus of this paper. We simply mention that we have implemented
and incorporated smoothed aggregation within the ML package. This pack-
age requires users to furnish vectors and matrices. Matrices are supplied by
providing size information, a matrix-vector product, and a getrow function
(used to obtain nonzeros and column numbers within a single row). The ML
package already contains V-cycle logic and many of the needed kernels : par-
allel matrix-matrix multiply, a variety of parallel smoothers (damped Jacobi,
symmetric chaotic5 Gauss-Seidel, block symmetric chaotic Gauss-Seidel, etc.)
and a coarse direct solver. Additionally, the ML package is utilized by sev-
eral different applications and facilitates the use of other software packages.
A pseudo-code program fragment using smoothed aggregation is given in
Figure 2.

The ML package has existing capabilities for handling general grid hierar-
chy issues to support various parallel geometric/algebraic multigrid methods.
To incorporate smoothed aggregation into the existing ML framework, we
needed to implement a new function that takes a discretization matrix and

5Chaotic means that each processor performs a local Gauss-Seidel and uses off-processor
information corresponding to the previous iteration.

6

ML_Create(...); /* create ML context (or object) */

/* Furnish matrix (and associate with grid level: fine_level)*/

/* by providing data pointer (Adata), getrow function */

/* (Agetrow) and matrix-vector multiply function (Amatvec). */

ML_Init_Amat(fine_level, Adata, Nrows, ...);

ML_Set_Amat(fine_level, Amatvec, ...);

ML_Set_Amat_Getrow(fine_level,Agetrow, ...);

/* Create coarse grids and grid transfer matrices */

/* and use Gauss-Seidel as smoother on all grids */

ML_Gen_MGHierarchy_UsingAggregation(ml, fine_level, ...);

ML_Gen_Smoother_GaussSeidel(ML_ALL_LEVELS, ...);

/* Perform multigrid V-cycle until convergence */

ML_Iterate(rhs, initial_guess, ...);

ML_Destroy(); /* destroy ML context (or object) */

Figure 2: Code fragment that invokes aggregation within ML package.

builds the tentative prolongator (using aggregation techniques). This new
function is called by ML Gen MGHierarchy UsingAggregation which takes
advantage of the existing ML framework and ML’s matrix algebra to create
the smoothed prolongator as well as the complete multigrid hierarchy. More
details concerning the ML package will appear in a paper [10].

The remainder of this section focuses on the parallelization of the basic
aggregation scheme. In the following subsections we describe 3 parallel ag-
gregation schemes.

3.1 Decoupled Parallel Aggregation Scheme

A simple parallel method is to let each processor aggregate its piece of the
grid ignoring connections between processors. That is, each processor is as-
signed a subgrid of the entire grid (as in standard parallel grid calculations).

7

Figure 3: Illustration of decoupled aggregation where thick black lines delin-
eate the processor grid and gray lines delineate the aggregates.

Each processor then aggregates its own subgrid using the serial aggregation
algorithm given in the last section. This variant, which we refer to as decou-
pled aggregation is quite easy to program and actually works fairly well in
practice (its performance, however, depends a lot on the domain partitioner;
that is, how the grid is partitioned among different processors). Its main
disadvantages are that it can produce many aggregates near inter-processor
boundaries that are either smaller or larger than an ideal aggregate (see for
example Figure 3). Furthermore, no aggregate can span two processors and
thus the overall aggregation process is limited by the processor grid. That is,
we cannot have fewer aggregates than processors. This might imply that the
coarsest grid is not so coarse. For example, a two dimensional problem on
1024 processors might have a 32×32 coarsest grid. Solving this coarsest grid
problem using only a couple of iterations of a simple smoother can slow the
overall multigrid convergence while doing many iterations can slow the time

8

per iteration. On the other hand, performing a direct solver on this coarsest
grid can require a significant amount of time especially when there are sev-
eral unknowns at a grid point and when the number of nonzeros per row is
large (typically the case within most algebraic multigrid methods). For these
reasons we explore two other aggregation variants : coupled aggregation and
MIS aggregation.

3.2 Coupled Parallel Aggregation Scheme

- P0 aggregates boundaries

 then waits for P0 to finish P0/P2 boundary
- P2 aggregates P3 boundary first and

 then waits for P0 to finish P0/P1 boundary
- P1 aggregates P3 boundary first and

- P3 waits for both P1 and P2 to finish boundaries

P0

P2 P3

P1

Figure 4: Illustration of coupled aggregation.

Coupled aggregation proceeds in the following fashion. Each processor i
splits all points assigned to it into two sets: interior (F i

I) and border (F i
B)

points. Border points are those which share a grid edge with a point on
another processor. Interior points are all points assigned to the processor
that are not border points.

The coupled aggregation procedure is given below.

Coupled Parallel Aggregation

phase 1: repeat on each processor i until all unaggregated points in F i
B are

adjacent to some aggregate
a) pick root point in F i

B not adjacent to any existing aggregate

9

(local or remote) and not adjacent to any unconsidered
points in processor j (∀j < i)

b) define new aggregate as root point plus all its neighbors

phase 2: aggregate points in F i
I based on the serial aggregation procedure

phase 3: sweep unaggregated points (in F i
B and F i

I) into local aggregates
phase 4: form new local aggregates for the remaining points in F i

B and F i
I

In brief, this algorithm aggregates points near inter-processor boundaries
before aggregating the interior (see Figure 4). It should be observed that
some processors (especially higher numbered processors) may need to wait
before it is possible to aggregate some border points. That is, a processor may
need to wait until lower numbered processors have aggregated their adjacent
border points. While this algorithm is somewhat more sequential, there is
still a great deal of work that can be done in parallel and that the aggregation
step is usually not the dominant part of the overall computation. Typically
for a three dimensional problem, the worst case scenario would require the
highest numbered processor to wait 3

√
P stages where P is the number of

processors. However, while this scheme requires more time to compute, it
can yield significantly better aggregates and does not limit the coarseness of
grids to the number of processors.

3.3 MIS-based Parallel Aggregation Scheme

The third aggregation scheme is based on maximally independent sets (MIS)
[9]. In brief, a variant of the coupled aggregation scheme can be realized
by applying the widely studied parallel MIS algorithms on the square of the
matrix representing the grid connectivities. In the following we explain the
relationship between the requirements of the aggregation procedure and the
MIS algorithm.

Again, the goal is to form an initial set of aggregates with as many points
as possible. If the degree of each point (number of adjacent edges) is ap-
proximately the same, this is equivalent to finding as many aggregates as
possible. The principal restriction is that a root point cannot be adjacent
to an existing aggregate (i.e. two root points cannot have a path of length
one or length two between them). Therefore, maximizing the number of
initial aggregates is equivalent to finding the largest number of root points
such that the distance between any two root points is at least three. We
can take the original matrix graph and replace it by another graph where

10

a new edge is added for each distance two path in the original graph. This
new graph actually corresponds to squaring the matrix. Then, maximizing
the number of initial aggregates is equivalent to finding an MIS of the graph
corresponding to the square of the matrix. The MIS problem has been well
studied and there are several different parallel variants. It is interesting to
note that coarsening within classical multigrid has often been formulated in
terms of MIS algorithms. In classical multigrid, coarsening is accomplished
by labeling a subset of grid points as coarse points (those that will remain
on the next coarser grid). These coarse grid points can be determined with
the help of an MIS algorithm applied to the original matrix graph. In our
MIS aggregation, the MIS scheme is actually applied to the square of the ma-
trix and is used to generate root points from which aggregates are derived.
Clearly the goal of coarsening within the two multigrid schemes is roughly
the same. However, given the differences (coarsening at different rates and
aggregating versus choosing a point subset), this direct connection via the
MIS algorithm on either the original graph or the matrix square graph was
quite surprising.

We implement our third aggregation scheme by replacing phase 1 of the
decoupled aggregation by an MIS algorithm on the square of the matrix
(our current implementation actually squares the matrices using ML’s sparse
matrix-matrix multiply). The MIS algorithm computes all the root points
which are used to form aggregates. This step is followed by phase 2 to aggre-
gate any points that are missed in phase 1. For the parallel MIS method, we
use the asynchronous distributed memory algorithm (ADMMA) by Adams.
This method has some similarities to the coupled method. In particular,
each processor chooses root points from among points that it owns. These
root points can be chosen from anywhere (not restricted to being near inter-
processor boundaries first). However, points near inter-processor boundaries
cannot be chosen before certain nearby off-processor points are handled on
lower numbered processors. Additionally, there is some logic to encourage
root points being chosen close to existing root points. We omit the details of
this method and refer the reader to [2]. It is important to note that actually
computing the matrix square is not an efficient implementation of the above
scheme. Clearly, this requires more storage and a fair amount of computa-
tion time to multiply two matrices. Another possibility (which we have not
implemented) is to implicitly build a new matrix with a getrow function that
uses the original matrix’s getrow to implicitly replace distance two paths by
direct edge connections.

11

4 Numerical Results

We first give results on both Poisson and anisotropic Poisson operators.
Specifically, we consider

uxx + uyy + uzz = f

and
uxx + εuyy = f

defined on the unit cube and unit square, respectively (with Dirichlet bound-
ary conditions around the cube or square) and ε chosen as 10−5 for the
anisotropic problem.

The two-dimensional unit square problems are partitioned over a two di-
mensional square processor array such that each x-axis grid line is distributed
over

√
P processors, and each y-axis grid line is distributed over

√
P pro-

cessors. The three-dimensional cube is partitioned over a two dimensional
square processor array such that each x-axis grid line is distributed over

√
P

processors, each y-axis grid line is distributed over
√

P processors, and each
z-axis grid line is entirely owned by a processor. It is important to note that
while the fine grid is a structured grid (done to facilitate problem setup), the
matrices for all coarser levels correspond to unstructured graphs. In these
examples we apply automatic coarsening schemes until coarsening can no
longer occur or until we reach a coarse grid with 100 points. On each grid
level (including the coarsest grid) two steps of a chaotic symmetric Gauss-
Seidel method are used as a smoother. The algebraic multigrid method is
used as a preconditioner inside a conjugate gradient scheme. Results are also
given for a conjugate-gradient method preconditioned by 2 steps of chaotic
symmetric Gauss-Seidel. The solution times reported do not include the
multigrid setup time but only the time spent in the iterations. The individ-
ual kernel times will be discussed later in this section. Operator complexity
numbers are obtained by summing the number of matrix nonzeros on all grid
levels. This operator complexity can be used as a rough guide to the amount
of storage required for each scheme. Finally, all of the results presented in
this paper were produced on the Intel TFLOP computer located at Sandia
National Laboratories.

Table 1 illustrates our results for the three dimensional Poisson problem.
In particular, all the multigrid preconditioners significantly outperform the
Gauss-Seidel preconditioners. It is important to note, however, that run

12

N procs CG/MG CG/symGS
decoupled coupled MIS

15/4.5 29/ 8.8 15/5.4 106/17.0

1133 64 1.5 1.4 1.7

21/9.1 47/18.7 10/5.1 138/33.2

1553 121 1.5 1.4 1.9

21/13.0 62/36.7 27/20.1 192/59.4

2253 256 1.5 1.4 1.7

20/21.5 71/56.8 33/33.8 247/105.1

2953 441 1.5 1.4 1.7

24/13.6 61/32.6 15/15.9 246/98.3

2873 676 1.5 1.4 1.6

Table 1: MG aggregation comparison on 3D Poisson problem. Total run
time (in seconds)/iterations on top and algebraic complexity below.

times improvements do not grow as significantly as the difference in itera-
tions. This is due to the lower multigrid parallel efficiencies. Comparing
the different aggregation schemes, we see that the total number of iterations,
run times, and operator complexity do not vary enormously for the decoupled
and MIS schemes. At present the coupled scheme is taking more iterations
and we suspect that this may be due to some large aggregates. We need to
study more closely the coupled scheme as we expect its performance to be
comparable to that of the decoupled scheme on this test problem.

Table 2 illustrates our results for a two dimensional anisotropic problem
using a direct solver (instead of chaotic Gauss-Seidel) on the coarsest grid.
The anisotropic situation is quite different from the Poisson case. In par-
ticular, the aggregation methods perform differently. It is well known that
for multigrid methods on structured anisotropic problems, it is best to either
use semi-coarsening or line-relaxation. This is due to the poor smoothing
properties corresponding to directions of weak coupling. Semi-coarsening
refers to coarsening the grid only in certain coordinate directions (e.g. not
in the direction of weak coupling). The weak connection dropping which
occurs when building the matrix graph will essentially mimic this effect. In

13

N procs CG/MG CG/symGS
decoupled coupled MIS

23.1/12 .6/12 .7/11 3.8/100

1372 64 2.1 1.7 1.4

88.6/12 .8/12 .9/12 5.3/132

1882 121 2.2 1.7 1.4

350.4/12 1.7/12 1.8/12 9.7/165

2732 256 2.2 1.7 1.4

949.0/12 1.4/12 1.7/12 5.9/204

3582 441 2.2 1.7 1.4

- 1.0/12 1.2/12 8.7/237

4432 676 1.7 1.4

Table 2: MG aggregation comparison on 2D anisotropic problem (using direct
solver for coarsest grid). Total run time (in seconds)/iterations on top and
operator complexity below.

14

particular, aggregates are formed by grouping strongly connected neighbors.
While necessary for convergence, this significantly limits the total number
of aggregates that can be created. It is this aggregation limitation which
is at the root of the poor performance for the decoupled algorithm. Specif-
ically, the decoupled algorithm restricts aggregates to lie on no more than
one processor. Thus on our 2D anisotropic problem, aggregation can only
occur along y-lines due to weak coupling in the y-direction. However, the
decoupled algorithm implies that each y-line must contain at least

√
P ag-

gregates and therefore the coarsest grid must have at least
√

NP points.
When N = 4432 and P = 676, this corresponds to 11518 grid points. In
this example we chose a direct solver for the coarsest grid (to eliminate er-
rors in the x direction). This direct solver is replicated on each processor.
Normally, this inefficiency is not a concern as the coarse grid contains very
little work. We note that we have also experimented with Gauss-Seidel on
the coarsest grid. Unfortunately, the slow Gauss-Seidel convergence on the
relatively large coarse grid obtained via decoupled aggregation deteriorates
the overall multigrid convergence. We expect, however, that the decoupled
scheme could be more competitive when efficient parallel direct solvers are
available for the solution of the coarsest grid problem (though considerable
parallel direct solver improvements are needed for this anisotropic problem).

In Figure 5, we show the results of a quasi-static electric potential calcu-
lation inside the code ALEGRA, a primary Sandia platform for multi-physics
modeling. The Figure corresponds to a problem consisting of several mate-
rials within an assembly containing a bar of poled ceramic. A fused silica
flyer plate impacts the assembly and when the wave passes through the bar
the ceramic dipoles releasing bound charge and generating a voltage which
drives a current through a load. The entire simulation requires many lin-
ear solves. Timing results for the first linear solve (which is typical of the
solves throughout the several hour long simulation) are given in Table 3. We
are currently working to remove the iteration growth that occurs with the
multigrid solves. However, even with suboptimal performance the multigrid
preconditioning far outperforms symmetric Gauss-Seidel. Here again we see
some variance between the different aggregation schemes though it is not
completely obvious which one is superior.

As our last example, we consider a thermal convection (or buoyancy
driven) flow of a fluid in a differentially heated square box in the presence of
gravity. It requires the solution of the momentum transport, energy trans-
port, and total mass conservation equations on the unit square in the plane

15

Figure 5: A fused silica flyer plate impacts assembly containing bar of poled
ceramic. Stress contours along with 4 electric potential isosurfaces are shown.

16

N procs CG/MG CG/symGS
decoupled coupled MIS

2.3/32 2.3/34 2.5/29 3.3/91

76,157 32 1.03 1.07 1.08

5.0/37 5.0/42 4.3/34 8.0/127

251,065 64 1.04 1.06 1.08

6.8/43 7.4/49 6.3/38 15.4/187

588,137 128 1.04 1.07 1.10

16.4/49 14.3/57 13.0/44 39.9/27

1,961,605 256 1.04 1.06 1.09

21.6/54 14.1/67 18.0/48 62.7/364

4,6222,225 512 1.04 1.06 1.09

Table 3: MG aggregation comparison on 3D QSE problem. Total run time
(in seconds)/iterations on top and operator complexity below.

with a combination of Dirichlet and Neumann boundary conditions. When
the corresponding Navier-Stokes equations are suitably nondimensionalized,
two parameters appear, the Prandtl number Pr and the Rayleigh number
Ra. In our study we took Pr = 1 and Ra = 100. A typical computed so-
lution, is given in Figure 6. The overall nonlinear problem is linearized via
Newton’s method. In this paper, we give the iterations and solution times
corresponding to solving the second Newton iteration (i.e. the Jacobian ma-
trix equation that arises in the second nonlinear step). The results are given
in Table 4 correspond to using a GMRES(100) method, a direct solver on
the coarsest grid, and a domain decomposition ILU smoother on the finer
levels. This smoother corresponds to performing an ILU algorithm on the
submatrix owned by each processor. In this case we see a big difference be-
tween the methods. In particular, the single level method does not converge
at all (except for the smallest problem). The decoupled aggregation method
takes a very long time though the number of iterations is reasonable. In this
case, almost all of the execution time is spent factorizing and performing the
backsolve on the coarsest grid system (which has a large number of nonzeros
per row and at least 1024 unknowns as there are 256 processors and 4 un-

17

Figure 6: Thermal convection in a square cavity at Ra = 1, 000, 000: Contour
plot of temperature shows a thermal boundary layer along hot and cold walls.

knowns at each grid point). Both the MIS and the coupled schemes perform
reasonably with the MIS method performing better on larger problems.

We now explore the different kernels within the aggregation schemes. Ta-
ble 5 illustrates the run time breakdown on the thermal convection problem.
The CG time includes all the iteration time excluding time spent in the
multigrid preconditioner. The V-cycle time includes all the multigrid time
for grid transfers, computing residuals and smoothers. The ‘construct P’
time includes all the time for aggregation, and the time to multiply the ten-
tative prolongator with the damped-Jacobi smoother (for all levels). Since
our focus is on the kernel breakdown (as opposed to convergence), all the
schemes are run 150 iterations (approximately the number of iterations for
the MIS scheme in Table 4). The main difference between the schemes is
in the time to construct the prolongation operator. In particular, the MIS
and coupled aggregation schemes take significantly more time than the de-
coupled scheme. If aggregation time is a concern, it might be best to use the
decoupled scheme on the finest levels and then switch to either the MIS or
coupled scheme on coarser levels so that aggregation is not limited by the
processors. Overall, we can see that the time to aggregate and to perform
matrix multiplies is not too large for this problem. However, many iterations
are taken and when fewer iterations are required, startup time is more sig-
nificant. Often in practice, some startup phases can be amortized over many
solves where either the actual linear system is the same or the linear system

18

N GMRES/DD-ILU GMRES/MG
decoupled coupled MIS

7.8/201 63.0/29 1.8/34 3.2/27

4,356 7.0 1.7 1.9

> 1000 61.4/41 3.0/48 6.3/38

16,900 2.05 1.3 1.6

> 1000 136.8/60 5.5/68 6.3/52

66,564 1.8 1.2 1.2

> 1000 158.5/93 27.0/124 16.7/70

264,196 1.3 1.1 1.2

> 1000 570.1/195 197.9/389 80.4/147

1,052,676 1.2 1.1 1.2

Table 4: MG aggregation comparison on 2D Thermal convection problem.
Total run time (in seconds)/iterations on top and operator complexity below.

sparsity pattern remains fixed.

5 Conclusions

Parallel variants of one of the most promising algebraic multigrid methods,
smoothed aggregation, have been presented. The main obstacle is the proper
parallelization of the aggregation phase. For some problems a simple decou-
pled parallel aggregation schemes performs adequately. However, in some
situations taking into account the inter-processor coupling is important to
maintain good convergence properties and keep the cost per iteration min-
imal. We have proposed a parallel coupled aggregation scheme which first
aggregates grid points near inter-processor boundaries and then aggregates
interior grid points. In addition, another parallel coupled aggregation scheme
has been proposed by casting the first phase of the aggregation process as a
search for the MIS. Results demonstrating the effectiveness of these proce-
dures have been given. Performance results for some unstructured applica-
tions on the Intel TFLOP computer using our parallel smoothed aggregation

19

kernels time (seconds)
decoupled coupled MIS

CG time 35.4 34.7 33.1

coarse LU 348.4 2.7 3.8

V cycle 54.3 38.2 45.8

P T
k AkPk 4.8 3.0 3.5

construct P 2.2 17.0 8.0

total 445.1 95.6 94.2

Table 5: Kernel times for 150 iterations of thermal convection problem con-
taining 1,052,676 degrees of freedom on 256 processors.

scheme have also been given.

Acknowledgement : The authors would like to thank Professor Stephen
Vavasis for his advice on formulating the aggregation process as an MIS
problem.

References

[1] M. Adams, Evaluation of Geometric and an Algebraic Multigrid Method
on 3D Finite Element Problems in Solid Mechanics. Talk at the Copper
Mountain Conference on Iterative Methods, Copper Mtn, Co, 4/2000.

[2] M. F. Adams, A parallel maximal independent set algorithm, in Pro-
ceedings 5th copper mountain conference on iterative methods, 1998.
Best student paper award winner.

[3] J. Bramble, J. Pasciak, J. Wang, and J. Xu, Convergence Esti-
mates for Multigrid Algorithms without Regularity Assumptions, Math
Comp., 57 (1991), pp. 23–45.

[4] A. Brandt, Multi-level Adaptive Solutions to Boundary-Value Prob-
lems, Math. Comp., 31 (1977), pp. 333–390.

20

[5] W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag,
Berlin, 1985.

[6] , Iterative Solution of Large Sparse Linear Systems of Equations,
Springer-Verlag, Berlin, 1994.

[7] V. Henson and U. Yang, Coarse Grid Selection of Algebraic Multi-
grid, Tech. Rep. UCRL-MI-13089, Lawrence Livermore National Labo-
ratory, Livermore, CA, 1999.

[8] E. Jenkins, R. Berger, J. Hallberg, S. Howington, C. T.
Kelley, J. Schmidt, A. Stagg, and M. Tocci, A Two-Level
Aggregation-Based Newton-Krylov-Schwarz Method for Hydrology, in
Parallel Computational Fluid Dynamics 1999, D. Keyes, A. Ecer, J. Pe-
riaux, and N. Satofuka, eds., North Holland, 2000, pp. 257–264.

[9] M. T. Jones and P. E. Plassman, A Parallel Graph Coloring
Heuristic, SIAM J. Sci. Comput., 14 (1993), pp. 654–669.

[10] C. Tong, R. Tuminaro, K. Devine, and J. Shadid, Design of a
Multilevel Preconditioning Module for Unstructured Calculations, Tech.
Rep. in preparaion, Sandia National Laboratories, Albuquerque NM,
87185, 2000.

[11] P. Vanek, Acceleration of Convergence of a Two Level Algorithm by
Smooth Transfer Operators, Appl. Math., 37 (1992), pp. 265–274.

[12] P. Vanek, M. Brezina, and J. Mandel, Convergence of Alge-
braic Multigrid Based on Smoothed Aggregation, Tech. Rep. report 126,
UCD/CCM, Denver, CO, 1998.

[13] P. Vanek, J. Mandel, and M. Brezina, Algebraic Multigrid Based
on Smoothed Aggregation for Second and Fourth Order Problems, Com-
puting, 56 (1996), pp. 179–196.

21

